GSFS Faculty

Back to Index

FUJII Masahiko

(Professor (concurrent faculty)/Division of Environmental Studies)

Department of Natural Environmental Studies/Impacts of climate change on coastal ecosystems and societies

Career Summary

  • April 2023 - Professor, International Coastal Research Center, Atmosphere and Ocean Research Institute, The University of Tokyo
  • June 2008 - March 2023   Associate professor, Faculty of Environmental Earth Science, Hokkaido University
  • September 2022 - November 2022   Visitng scholar, University of Washington
  • May 2013 - July 2013   Visiting professor, Politecnico di Torino
  • August 2006 - May 2008   Associate professor, Center for Sustainability Science
  • January 2006 - July 2006   Research associate, School of Marine Sciences, University of Maine
  • August 2003 - December 2005   Doctoral researcher, School of Marine Sciences, University of Maine
  • January 2002 - July 2003   Doctoral researcher, National Institute of Environmental Studies
  • Research Activities

    Marine environmental issues around the world are becoming more apparent as global environmental issues such as global warming, ocean acidification and deoxygenation become more complex and intertwined with local environmental issues such as the inflow of materials from land to coastal areas, and globalization is making it even more difficult to solve these problems. In other words, it is possible that your actions could have an impact on people living on the other side of the world, and vice versa. In this situation, the measures to be taken for each environmental issue will naturally differ. In our laboratory, we are considering what measures (mitigation and adaptation measures) are needed to solve environmental problems of different spatial and temporal scales, based on the results of current assessments and future predictions, while making the most of individual expertise (so please become a specialist, not a generalist!) and using various methods such as ocean observations and numerical modeling.


    The following photos show the potential impact of global warming, ocean acidification and overfishing on marine life and human society if these trends continue, and are not intended to show that this is an absolute certainty. Our research aims to predict possible negative impacts as quickly and accurately as possible, and to take countermeasures.

    Literature

        Peer-reviewed papers
      1. 川合 美千代,藤井 賢彦,石津 美穂,脇田 昌英 (2024), 日本沿岸域における海洋酸性化の現状, 地球環境, 29(1), 43-52.
      2. Iguchi, A., K. Gibu, M. Yorifuji, M. Nishijima, A. Suzuki, T. Ono, Y. Matsumoto, M. Inoue, M. Fujii, D. Muraoka, Y. Fujita, and H. Takami (2024), Transgenerational acclimation to acidified seawater and gene expression patterns in a sea urchin, Science of the Total Environment, 930, 172616, doi: 10.1016/j.scitotenv.2024.172616.
      3. Ono, T., D. Muraoka, M. Hayashi, M. Yorifuji, A. Dazai, S. Omoto, T. Tanaka, T. Okamura, G. Onitsuka, K. Sudo, M. Fujii, R. Hamanoue, and M.Wakita (2024), Short-term variation in pH in seawaters around coastal areas of Japan: characteristics and forcings, Biogeosci., 21, 177–199, doi:10.5194/bg-21-177-2024.
      4. Fujii, M., R. Hamanoue, L. P. C. Bernardo, T. Ono, A. Dazai, S. Oomoto, M. Wakita, and T. Tanaka (2023), Assessing impacts of coastal warming, acidification, and deoxygenation on Pacific oyster (Crassostrea gigas) farming: A case study in the Hinase Area, Okayama Prefecture and Shizugawa Bay, Miyagi Prefecture, Japan, Biogeosci., 20, 4527–4549, doi:10.5194/bg-20-4527-2023.
      5. Bernardo, L. P. C., M. Fujii, and T. Ono (2023), Development of a high-resolution marine ecosystem model for predicting the combined impacts of ocean acidification and deoxygenation, Front. Mar. Sci., 10, 1174892, doi: 10.3389/fmars.2023.1174892.
      6. Ono, R., Y. Fukuda, M. Fujii, and Y. Yamagata (2023), Assessment of unutilized woody biomass energy and the cost and greenhouse gas emissions of woody biomass power plants in Hokkaido, Japan, Cleaner Energy Systems, 6, 100084, doi:10.1016/j.cles.2023.100084.
      7. 藤井 賢彦 (2022), 地球温暖化・海洋酸性化・貧酸素化が海洋生態系に及ぼす影響, 沿岸海洋研究, 60(1), 51-60.
      8. Yasir Haya, L. O. M., B. Sadarun, M. Tadjudah, A. Kangkuso, L. O. Alirman Afu, A. G. Pratikino, A. Takwir, and M. Fujii (2022), Assessing long-term coral reef degradation in Indonesia’s Tiworo strait marine conservation area using remote sensing and rapid appraisal for fisheries approaches, Model. Earth Syst. Environ. doi:10.1007/s40808-022-01421-7.
      9. Sudo, K., S. Maehara, M. Nakaoka, and M. Fujii (2022), Predicting future shifts in the distribution of tropicalization indicator fish that affect coastal ecosystem services of Japan, Front. Built Environ., 7, 788700. doi:10.3389/fbuil.2021.788700
      10. Endo, A., M. Yamada, K. Baba, Y. Miyashita, R. Sugimoto, A. Ishii, J. Nishijima, M. Fujii, T. Kato, H. Hamamoto, M. Kimura, T. Kumazawa, N. Masuhara, and H. Honda (2021), Methodology for Nexus Approach Toward Sustainable Use of Geothermal Hot Spring Resources, Frontiers in Water, 3, 713000, doi:10.3389/frwa.2021.713000.
      11. Avtar, R., M. Navia, J. Sassen, and M. Fujii (2021), Assessment of changes in mangrove ecosystems in the Ba and Rewa deltas, Fiji, and their impacts using information from multiple sources, Coastal Engineering Journal, 63(3), doi:10.1080/21664250.2021.1932332.
      12. Fujii, M., S. Takao, T. Yamaka, T. Akamatsu, Y. Fujita, M. Wakita, A. Yamamoto, and T. Ono (2021), Continuous monitoring and future projection of ocean warming, acidification, and deoxygenation on the subarctic coast of Hokkaido, Japan, Frontiers in Marine Science, 8, 590020, doi:10.3389/fmars.2021.590020.
      13. Shimahata, A., M. Farghali, and M. Fujii (2020), Factors influencing the willingness of dairy farmers to adopt biogas plants: A case study in Hokkaido, Japan. Sustainability, 12(18), 7809, doi:10.3390/su12187809.
      14. Imamura, K., K. T. Takano, N. H. Kumagai, Y. Yoshida, H. Yamano, M. Fujii, T. Nakashizuka, and S. Managi (2020), Valuation of coral reefs in Japan: Willingness to pay for conservation and the effect of information, Ecosystem Services, doi:10.1016/j.ecoser.2020.101166.
      15. Yasir Haya, L. O. M., and M. Fujii (2020), Assessment of coral reef ecosystem status in the Pangkajene and Kepulauan Regency, Spermonde Archipelago, Indonesia, using the rapid appraisal for fisheries and the analytic hierarchy process, Marine Policy, 118,104028.
      16. Endo, A., M. Yamada, Y. Miyashita, R. Sugimoto, A. Ishii, J. Nishijima, M. Fujii, T. Kato, H. Hamamoto, M. Kimura, T. Kumazawa, and J. Qi (2020), Dynamics of water–energy–food nexus methodology, methods, and tools, Current Opinion in Environmental Science & Health, 13, 46–60, doi:10.1016/j.coesh.2019.10.004.
      17. Hong, T. C. H., R. Avtar, and M. Fujii (2019), Monitoring changes in land use and distribution of mangroves in the southeastern part of the Mekong River Delta, Vietnam, Tropical Ecology, 60, 552–565.
      18. Zeng, J., T. Kumano, M. Fujii, S. Yamagata, M. Kamide, and H. Araki (2019), CO2 emission and cost analysis in asparagus fusekomi forcing culture with wood pellet boiler, Japanese Journal of Farm Work Research, 54(1), 3-13.
      19. Yasir Haya, L. O. M., and M. Fujii (2019), Assessing economic values of coral reefs in the Pangkajene and Kepulauan Regency, Spermonde Archipelago, Indonesia, Journal of Coastal Conservation, doi:10.1007/s11852-01900700-3.
      20. Ba, X., N. Kouchi, K. Watanabe, M. Nakaoka, and M. Fujii, Material cycling in coastal waters and the role of the Kiritappu Wetland in Hamanaka, Hokkaido: An analysis using the surf clam (Pseudocardium sachalinense) as an environmental indicator, Marine Chemistry, 205, 81-89.
      21. Kumagai, N. H., J. García Molinos, H. Yamano, S. Takao, M. Fujii, and Y. Yamanaka (2018), Ocean currents and herbivory drive macroalgae-to-coral community shift under climate warming, Proc. Natl. Acad. Sci. USA, doi:10.1073/pnas.1716826115.
      22. Gavrilyeva, T. N., A. Sugimoto, M. Fujii, R. Yamanaka, G. N. Pavlov, and D. A. Kirillin (2018), Sustainable development of universities: International and Russian practices]. Vysshee obrazovanie v Rossii (Higher Education in Russia), 27(7), 52-65. (in Russian with English abstract)
      23. Fujii, M., and T. Sawadate (2018), Assessment of potential small hydropower generation: A case study in Otsuchi, Iwate Prefecture, Japan, In: Endo. A., and Oh, T. (eds.), The Water-Energy-Food Nexus: Human-Environmental Security in the Asia-Pacific Ring of Fire, Springer, 21-31.
      24. 上野 洋路, 小埜 恒夫, 森岡 優志, 藤井 直紀, 藤井 賢彦, 轡田 邦夫, 原田 尚美(2017), 海の出前授業: 日本海洋学会講師派遣事業, 沿岸海洋研究, 55(1),65-70.
      25. García Molinos, J, S. Takao, N. H. Kumagai, E. S. Poloczanska, M. T. Burrows, M. Fujii, and H. Yamano (2017), Improving the interpretability of climate landscape metrics: an ecological risk analysis of Japan’s Marine Protected Areas. Global Change Biology, 23, 4440-4452, doi:10.1111/gcb.13665.
      26. Yamada, M., J. Shoji, S. Ohsawa, T. Mishima, M. Hata, H. Honda, M. Fujii, and M. Taniguchi (2017), The impact of the hot spring drainage on the fish community around temperate estuaries in southwestern Japan, Journal of Hydrology: Regional Studies, 11, 69-83.
      27. Fujii, M., S. Tanabe, M. Yamada, T. Mishima, T. Sawadate, and S. Ohsawa (2017), Assessment of the potential for developing mini/micro hydropower: A case study in Beppu City, Japan, Journal of Hydrology: Regional Studies, 11, 107-116.
      28. Yasir Haya, L. O. M., and M. Fujii (2017), Mapping the change of coral reefs using remote sensing and in situ measurements: a case study in Pangkajene and Kepulauan Regency, Spermonde Archipelago, Indonesia, Journal of Oceanography, doi:10.1007/s10872-017-0422-4.
      29. Rospriandana, N. and M. Fujii (2017), Assessment of small hydropower potential in the Ciwidey subwatershed, Indonesia: a GIS and hydrological modeling approach, Hydrological Research Letters, 11(1), 6–11, doi:10.3178/hrl.11.6.
      30. Kumagai, N. H., H. Yamano, M. Fujii, Y. Yamanaka (2016), Habitat-forming seaweeds in Japan (fucoids and temperate kelps), Ecological Research, 31, 759–759, doi:10.1007/s11284-016-1404-5.
      31. Yara, Y., H. Yamano, M. Steinacher, M. Fujii, M. Vogt, N. Gruber, and Y. Yamanaka (2016), Potential future coral habitats around Japan depend strongly on anthropogenic CO2 emissions, In: Nakano, S., T. Yahara, and T. Nakashizuka (eds.), Aquatic Biodiversity Conservation and Ecosystem Services, 41-56, Springer, Tokyo.
      32. Orencio, P. M., A. Endo, M. Taniguchi, and M. Fujii (2016), Using thresholds of severity to threats to and the resilience of human systems in measuring security, Social Indicators Research, 129(3), 979-999, doi:10.1007/s11205-015-1152-x.
      33. Takao, S., H. Yamano, K. Sugihara, N. H. Kumagai, M. Fujii, and Y. Yamanaka (2015), An improved estimation of the poleward expansion of coral habitats based on the interannual variation of sea surface temperatures, Coral Reefs, 34, 1125-1137, doi:10.1007/s00338-015-1347-2.
      34. Fukuda, Y., and M. Fujii (2015), Biomass Resource Mapping and Potential Evaluation in Hokkaido, Japan, Journal of the Japan Institute of Energy, 94, 1057-1065.
      35. Takao, S., N. H. Kumagai, H. Yamano, M. Fujii, and Y. Yamanaka (2015), Projecting the impacts of rising water temperatures on the distribution of seaweeds around Japan under multiple climate change scenarios, Ecology and Evolution, 5, 213-223, doi:10.1002/ece3.1358.
      36. 柴野 良太, 藤井 賢彦, 山中 康裕, 山野 博哉, 高尾 信太郎 (2014), 北海道における沿岸水温環境とホタテガイ漁獲量の時空間変動解析, 水産海洋研究,78(4), 259-267.
      37. Yamano, H., C. Hongo, K. Sugihara, Y. Yara, Y. Nakao, and M. Fujii (2014), Current status of national coral databases in Japan: Dataset development, applications, and future directions, In: Nakano, S., T. Yahara, T. Nakashizuka (Eds.), Integrative Observations and Assessments, Springer, 65-81.
      38. Magdaong, E., H. Yamano, and M. Fujii (2014), Development of a large-scale, long-term coral cover and disturbance database in the Philippines, In: Nakano, S., T. Yahara, T. Nakashizuka (Eds.), Integrative Observations and Assessments, Springer, 83-109.
      39. Araki, H., S. Fujiwara, T. Jishi, M. Fujii, T. Yokota, and T. Nishida (2014). Winter production of green asparagus by using surplus heat from machinery room and used hot water from hotel’s spa. Acta Horticulturae, 1037, 155-161.
      40. Yara, Y., M. Fujii, H. Yamano and Y. Yamanaka (2014), Projected coral bleaching in response to future sea surface temperature rises and the uncertainties among climate models, Hydrobiologia, doi:10.1007/s10750-014-1838-0.
      41. Magdaong, E. T., M. Fujii, H. Yamano, W. Y. Licuanan, A. Maypa, W. L. Campos, A. C. Alcala, A. T. White, D. Apistar, and R. Martinez (2014), Long-term change in coral cover and the effectiveness of marine protected areas in the Philippines: a meta-analysis, Hydrobiologia, doi:10.1007/s10750-013-1720-5.
      42. Honjo, K., and M. Fujii (2014), Impacts of demographic, meteorological, and economic changes on household CO2 emissions in the 47 prefectures of Japan, Regional Science Policy & Practice, 6(1), doi:10.1111/rsp3.12013.
      43. Orencio, P. M., and M. Fujii (2014), A spatiotemporal approach for determining disaster-risk potential based on damage consequences of multiple hazard events, Journal of Risk Research, doi:10.1080/13669877.2013.816334.
      44. Orencio, P. M., and M. Fujii (2013b), A Localized Disaster-resilience Index to Assess Coastal Communities Based on an Analytical Hierarchy Process (AHP), International Journal of Disaster Risk Reduction, 3, 62-75.
      45. Orencio, P. M., and M. Fujii (2013a), An index to determine vulnerability of communities developing a composite index for vulnerability of communities in a coastal zone: A case study of Baler, Aurora, Philippines, A Journal of the Human Environment (AMBIO), doi:10.1007/s13280-012-0331-0.
      46. Yara, Y., M. Vogt, M. Fujii, H. Yamano, C. Hauri, M. Steinacher, N. Gruber, and Y. Yamanaka (2012), Ocean acidification limits temperature-induced poleward expansion of coral habitats around Japan, Biogeosciences, 9, 4955-4968, doi:10.5194/bg-9-4955-2012.
      47. 藤原 沙弥香, 地子 立, 荒木 肇, 藤井 賢彦 (2012), 温泉地におけるCO2排出量低減の可能性検討 -北海道・流山温泉と夕張温泉における未利用エネルギーの利用促進に向けたケーススタディ-, 日本LCA学会誌, 8(4), 356-369, doi:10.3370/lca.8.356.
      48. 山田 健太, 藤井 賢彦, 荒木 肇 (2012), 大学キャンパスにおける有機性廃棄物の学内循環システムの導入可能性検討: 北海道大学をケーススタディとして,日本LCA学会誌, 8(1), 45-54, doi:10.3370/lca.8.45.43.
      49. Tanaka, A., M. Fujii, and T. Oishi (2012), Availability of an equation to equation to evaluate error by optical path discretization in radiative transfer computation based on the successive order of scattering method, Journal of Oceanography, doi:10.1007/s10872-011-0087-3.
      50. Yara, Y., K. Oshima, M. Fujii, H. Yamano, Y. Yamanaka, and N. Okada (2011), Projection and uncertainty of the poleward range expansion of coral habitats in response to sea surface temperature warming: A multiple climate model study, Galaxea, 13, 11-20.
      51. Lin, Y., M. Fujii, W. Peng (2011), Study on comparison of citizen’s environmental awareness among four cities in China and Japan, Management Science and Engineering, 5(3), 126-131, doi:10.3968/j.mse.1913035X20110503.315.
      52. Fujii, M., F. Chai, L. Shi, H. Y. Inoue, and M. Ishii (2009), Seasonal and interannual variability of oceanic carbon cycling in the western and central tropical-subtropical Pacific: A physical-biogeochemical modeling study, J. Oceanogr., 65(5), 689-701.
      53. Fujii, M., and F. Chai (2009), Influences of initial plankton biomass and mixed-layer depths on the outcome of iron-fertilization experiments, Deep-Sea Res. Part II, 56, 2936-2947.
      54. Kishi, M. J., K. Nakajima, M. Fujii, and T. Hashioka (2009), Environmental factors which affect growth of Japanese common squid, Tadarodes pacificus, analyzed by a bioenergetics model coupled with a lower trophic ecosystem model, J. Mar. Sys., 78, 278-287.
      55. Fujii, M., and Y. Yamanaka (2008), Effects of storms on primary productivity and air-sea CO2 exchange, Biogeosciences, 5, 1189-1197.
      56. Fujii, M., E. Boss, and F. Chai (2007b), The value of adding optics to ecosystem models: a case study, Biogeosciences, 4, 817-835.
      57. Friedrichs, M. A. M., J. A. Dusenberry, L. A. Anderson, R. A. Armstrong, F. Chai, J. R. Christian, S. C. Doney, J. Dunne, M. Fujii, R. Hood, D. J. McGillicuddy Jr., J. K. Moore, M. Schartau, Y. H. Spitz, and J. D. Wiggert (2007), Assessment of skill and portability in regional marine biogeochemical models: Role of multiple planktonic groups, J. Geophys. Res., 112, C08001, doi:10.1029/2006JC003852.
      58. Fujii, M., and F. Chai (2007a), Modeling carbon and silicon cycling in the equatorial Pacific, Deep-Sea Res. Part II, doi:10.1016/j.dsr2.2006.12.005.
      59. Kishi, M. J., M. Kashiwai, D. M. Ware, B. A. Megrey, D. L. Eslinger, F. E. Werner, M. Aita-Noguchi, T. Azumaya, M. Fujii, S. Hashimoto, D. Huang, H. Iizumi, Y. Ishida, S. Kang, G. A. Kantakov, H. Kim, K. Komatsu, V. V. Navrotsky, S. L. Smith, K. Tadokoro, A. Tsuda, O. Yamamura, Y. Yamanaka, K. Yokouchi, N. Yoshie, J. Zhang, Y. I. Zuenko, and V. I. Zvalinsky (2007), NEMURO – a lower trophic level model for the North Pacific marine ecosystem, Ecological Modelling, 202, 12-25, doi:10.1016/j.ecolmodel.2006.08.021.
      60. Fujii, M., Y. Yamanaka, Y. Nojiri, M. J. Kishi, and F. Chai (2007a), Comparison of seasonal characteristics in biogeochemistry among the subarctic North Pacific stations described with a NEMURO-based marine ecosystem model, Ecological Modelling, 202, 52-67, doi:10.1016/j.ecolmodel.2006.02.046.
      61. Fujii, M., M. Ikeda, and Y. Yamanaka (2005b), Roles of biogeochemical processes in the carbon cycle using a simple coupled physical-biogeochemical model, J. Oceanogr., 61(5), 803-815.
      62. Yoshie, N., M. Fujii, and Y. Yamanaka (2005), Ecosystem changes after the SEEDS iron fertilization in the western North Pacific simulated by a one-dimensional ecosystem model, Prog. Oceanogr., 64(2-4), 283-306, doi:10.1016/j.pocean.2005.02.010.
      63. Fujii, M., N. Yoshie, Y. Yamanaka, and F. Chai (2005a), Simulated biogeochemical responses to iron enrichments in three high nutrient, low chlorophyll (HNLC) regions, Prog. Oceanogr., 64(2-4), 307-324, doi:10.1016/j.pocean.2005.02.017.
      64. Fujii, M., and F. Chai (2005), Effects of biogenic silica dissolution on silicon cycling and export production, Geophys. Res. Lett., 32(5), L05617, doi:10.1029/2004GL022054.
      65. Yamanaka, Y., N. Yoshie, M. Fujii, M. Aita-Noguti, and M. J. Kishi (2004), An ecosystem model coupled with Nitrogen-Silicon-Carbon cycles applied to Station A7 in the Northwestern Pacific, J. Oceanogr., 60(2), 227-241. Fujii, M., Y. Nojiri, Y. Yamanaka, and M. J. Kishi (2002), A one-dimensional ecosystem model applied to time-series Station KNOT, Deep-Sea Res. Part II, 49, 5441-5461.
      66. Fujii, M., M. Ikeda, and Y. Yamanaka (2000), Roles of physical processes in the carbon cycle using a simplified physical model, J. Oceanogr., 56(6), 655-666.

        Non-peer-reviewed papers
      1. 藤井 賢彦 (2022), 地球温暖化・海洋酸性化・貧酸素化が海洋生態系に及ぼす影響, 沿岸海洋研究, 60(1), 51-60.
      2. 藤井 賢彦, 桑江 朝比呂 (2022), シンポジウム「沿岸域は地球温暖化にどう立ち向かうか」のまとめ, 沿岸海洋研究, 60(1), 61-62.
      3. 小埜 恒夫, 村岡 大祐, 林 正裕, 依藤 実樹子, 鈴木 淳, 井口 亮, 藤井 賢彦 (2022), Patrick Bernardo Lawrence, 沿岸域における海洋酸性化と貧酸素化の複合影響評価, 沿岸海洋研究, 60(1), 85-88.
      4. 藤井 賢彦 (2022), 気候変動と海洋生物資源, 太陽エネルギー, 48(2), 50-56.
      5. 藤井 賢彦 (2022), 気候変動が日本沿岸の海洋生態系や社会に及ぼす影響, 水環境学会誌 45(3), 83-87.
      6. 藤井 賢彦 (2021), 北海道沿岸域における地球温暖化・海洋酸性化・貧酸素化指標の連続観測と将来予測, 環境と測定技術, 48(12), 19-30.
      7. 小埜 恒夫, 藤井 賢彦 (2021), 日本沿岸域のpH連続観測網 -海洋酸性化に備えるために-, 環境と測定技術, 48(10), 3-8.
      8. 藤井 賢彦 (2020), 海洋酸性化, 沿岸域学会誌, 32(4), 15-19.
      9. 藤井 賢彦 (2020), 地球温暖化・海洋酸性化が日本沿岸の海洋生態系や社会に及ぼす影響, 水産工学, 56(3), 191-195.

        Books
      1. 藤井 賢彦, 澤館 隆宏, 岡田 靖子 (2023), 地域特性を考慮した小水力発電賦存量の見積り, 大竹 秀明, 野原 大補, 中島 孝 (編), 再生可能エネルギーの気象学, 気象研究ノート, 128-133.
      2. Delos Santos, K. A., R. Avtar, S. Salmo, and M. Fujii (2022), Assessment of mangrove colonization of aquaculture pondsthrough satellite image analysis: Implications for mangrovemanagement, In: Assessing, mapping and modelling of mangroveecosystem services, R. Dasgupta, S. Hashimoto, and O. Saito (Eds.), Springer Sustainability Science Book Series, 31-50.
      3. 藤井 賢彦 (訳) (2021), 海洋学に関する物理概念の指導法, TheOceanography Society, 52pp.
      4. Fujii, M. (2020), Ocean warming: The impacts on marine ecosystemsand human societies in Japanese coasts. In: Li, Y. and Namikawa, T.(Eds.), In the Era of Big Change: Essays about Japanese Small-ScaleFisheries. TBTI Global Publication Series, St. John’s, NL, Canada, 357-365.
      5. 山北 剛久, 仲岡 雅裕, 山野 博哉, 名波 敦, 石川 洋一, 須藤 健二, 藤井 賢彦, 久保 雄広, 牧野 光琢, 堀 正和, 田中 裕介, 四ツ倉 典滋, 瓜生 真也, 柘植 隆宏, 熊谷 直喜, 矢部 徹, 但馬 英知, 杉本 あおい, 白山 義久 (2020), 環境研究総合推進費 戦略的研究開発領域課題(S-15) 社会・生態システムの統合化による自然資本・生態系サービスの予測評価, PANCES Policy Brief, 3, 12pp.
      6. Christian, J., and T. Ono (Eds.) (2019), Ocean acidifi cation anddeoxygenation in the North Pacific Ocean, PICES Special Publication, 5, 116pp.
      7. 藤井 賢彦 (2018), 岩手県大槌町の地域特性を考慮した小水力発電賦存量の見積り, 窪田 順平 (編), 人間文化研究機構広領域連携型基幹研究プロジェクト「日本列島における地域社会変貌・災害からの地域文化の再構築」 新しい地域文化研究の可能性を求めて, 6, 震災復興と地域のレジリエンス, 6-17.
      8. 藤井 賢彦 (2018), 再生可能エネルギーと熱のカスケード(多段階)利用, 馬場 健司, 増原 直樹, 遠藤 愛子 (編著), 地熱資源をめぐる水・エネルギー・食 料ネクサス ―学際・超学際アプローチに向けて―, 近代科学社, 124-134.
      9. 日本海洋学会 (編) (2017), 海の温暖化 -変わりゆく海と人間活動の影響-, 朝倉書店, 154pp. (編集委員, 4章執筆を担当)
      10. 藤井 賢彦 (2014), 海洋酸性化, 水産海洋学入門 ー海洋生物資源の持続的利用ー, 水産海洋学会 (編), 講談社, 184-192.
      11. Fujii, M., and A. Tanaka (2014), Modeling for evaluation and predictionof eff ects of shirt-term atmospheric disturbance on air-sea materialcycling, In: Linkages in biogeochemical cycles between surface oceanand lower atmosphere (Eds. M. Uematsu, Y. Yokouchi, S. Takeda, Y.Yamanaka, and A. Tsuda), TERRAPUB, 211-222, doi:10.5047/w-pass.a04.001.
      12. 藤井 賢彦 (2012), 循環型社会と低炭素社会, 吉田 文和, 荒井 眞一, 深見 正仁, 藤井 賢彦 (編著), 持続可能な未来のために -原子力政策から環境教育, アイヌ文化まで-, 北海道大学出版会, 55-84.
      13. 藤井 賢彦, 山中 康裕 (2012), 海の生物への影響. 江守 正多・気候シナリオ「実感」プロジェクト影響未来像班(編著), 地球温暖化はどれくらい「怖い」か? ~温暖化リスクの全体像を探る~, 技術評論社, 89-120.
      14. Yamanaka, Y. and M. Fujii (2011), Effects of climate change and globalwarming on marine ecosystems and fi shery resources, In: Sumi, A., N.Mimura, and T. Masui (Ed.), Climate change global sustainability: Aholistic approach, United Nations University Press, 316pp.
      15. 藤井 賢彦 (2011), 生物多様性と地球温暖化, 吉田 文和, 深見 正仁, 藤井 賢彦(編著), 持続可能な低炭素社会III -国家戦略・個別政策・国際政策-, 北海道大学出版会, 167-185.
      16. 藤井 賢彦 (2010), 持続可能な低炭素社会に向けた身近な取り組み, 吉田 文 和, 池田 元美, 深見 正仁, 藤井 賢彦 (編著), 持続可能な低炭素社会II -基礎知識と足元からの地域づくり-, 北海道大学出版会, 183-200.
      17. Yamanaka, Y., M. Fujii, and M. Ikeda (2010), The natural systemmechanism of global warming, In: Yoshida, F, M. Ikeda (Ed.),Sustainable Low-Carbon Society, Hokkaido University Press, 1-12.
      18. 藤井 賢彦 (分担執筆) (2009), アジョイント法の応用, 淡路 敏之, 蒲地 政文,池田 元美, 石川 洋一 (編著), データ同化 観測・実験とモデルを融合するイノベーション, 京都大学出版会, 223-246.
      19. 山中 康裕, 藤井 賢彦, 池田 元美 (2009), 地球温暖化の自然科学的メカニズム, 吉田 文和, 池田 元美 (編著), 持続可能な低炭素社会, 北海道大学出版会,1-13.

        MISC
      1. 藤井 賢彦 (2024), 進む温暖化と酸性化 貝類養殖がとるべき対策は? 養殖ビジネス, 778, 31-36.
      2. 藤井 賢彦, 濵野上 龍志, ベルナルド ローレンス パトリック カセス, 小埜 恒夫, 太齋 彰, 大本 茂之, 脇田 昌英, 田中 丈裕 (2024b), 沿岸の温暖化・酸性化・貧酸素化がマガキ養殖に及ぼす影響の評価と予測: 岡山県備前市日生海域と宮城県南三陸町志津川湾における事例研究, 月刊海洋, 56(4), 263-274.
      3. 藤井 賢彦, 小森田 智大, 山田 誠, 杉本 亮 (2024a), 総論:沿岸海洋生態系 ―水循環と陸海相互作用―, 月刊海洋, 56(1), 141-145.
      4. 藤井 賢彦 (2023), 海洋酸性化とその対策, Ocean Newsletter, 556.
      5. 藤井 賢彦, 芳村 毅, 小埜 恒夫 (2021), 海洋酸性化・貧酸素化・地球温暖化の海洋生態系への影響評価, 月刊海洋, 53(6), 299-303.
      6. 藤井 賢彦, 高尾 信太郎, 山家 拓人, 赤松 知音, 藤田 大和, 脇田 昌英, 山本彬友, 小埜 恒夫 (2021), 北海道沿岸域における地球温暖化・海洋温暖化・貧酸素化指標の連続モニタリングと将来予測シミュレーション, 月刊海洋, 53(6), 318-331.
      7. 藤井 賢彦 (2020), 地球温暖化が日本沿岸の海洋生態系や社会に及ぼす影響, グリーン・エージ, 47(6), 4-7.
      8. 芳村 毅, 小埜 恒夫, 藤井 賢彦 (2018), 序文:海洋酸性化と地球温暖化に対する沿岸・近海域の生態系の応答, 特集 海洋酸性化と地球温暖化に対する沿岸・近海域の生態系の応答 (上巻), 月刊海洋, 50(5), 195-199.
      9. 藤井 賢彦 (2018), 海洋酸性化が日本の沿岸社会に及ぼす影響評価, 特集 海洋酸性化と地球温暖化に対する沿岸・近海域の生態系の応答 (上巻), 月刊海洋, 50(5), 208-216.
      10. 藤井 賢彦 (2017), テーマ「海洋資源」 エネルギー転換によるCO2排出削減で、海水温上昇、海洋酸性化の緩和を!, NPO法人さっぽろ自由学校「遊」(編), SDGs 北海道の地域目標をつくろう, 31. 15.
      11. 藤井 賢彦 (2015), 創エネ・省エネの新たな付加価値, さっぽろエネルギーの未来, 73-75, 札幌市.
      12. Ratio, M, A. R., Y. Fujimitsu, J. Nishijima, M. Fujii, and M. Taniguchi (2014), A case study of impacts, risks and vulnerabilities of the localcommunity of Makiling-Banahaw Geothermal Complex, Philippines,Proceedings of 36th New Zealand Geothermal Workshop, November 2014.
      13. Ratio, M. A. R., Y. Fujimitsu, J. Nishijima, M. Fujii, and M. Taniguchi (2014), Perceived knowledge and social acceptance of geothermalenergy of the local community in Makiling-Banahaw Geothermal Complex, Proceedings of Grand Renewable Energy, O-Po-1-5, 4p, July 2014.
      14. Ito, S., M. J. Kishi, Y. Yamanaka, and M. Fujii (2003), Saury groupreport and model results, PICES Scientific Report, 20, 114-119.
      15. 藤井 賢彦, 石田 明生 (2013), 海洋酸性化総説, 特集 海洋酸性化, 海洋と生物,35(4), 315-322.
      16. 藤井 賢彦 (2013), 海洋酸性化の人間社会への影響評価, 将来予測および対策,特集 海洋酸性化, 海洋と生物, 35(4), 366-371.
      17. Fujii, M. (2007), Modeling biogeochemical responses to iron-enrichment experiments in high nutrient, low chlorophyll regions,SOLAS Newsletter, 6, 4.
      18. 吉江 直樹, 山中 康裕, 橋岡 豪人, 藤井 賢彦 (2007), 生態系モデル”eNEMURO”の開発と時系列観測研究への応用, 月刊海洋, 39(2), 2-10.
      19. 藤井 賢彦, 山中 康裕 (2003), 海洋物質循環・生態系の振舞いに対する気候変動の影響, 月刊海洋, 35, 65-71.

    Other Activities

      Career as committee members (international only)
    • January 2025 - Integrated Marine Biosphere Research (IMBeR) Science Steering Committee
    • August 2024 - UNESCO-IOC Group of Experts on Capacity Development
    • February 2023 - Global Ocean Acidification Observation Network (GOA-ON) Biological Working Group member
    • July 2022 - Integrated Marine Biosphere Research (IMBeR) Eutrophication Study Group
    • October 2019 - September 2022 5th International Symposium on the Ocean in a High CO2 World International Scientific Committee Member

    Messages to Students

    I am studying on the impacts of global warming, ocean acidification, and deoxygenation, all of which are thought to be caused by excessive emissions of anthropogenic CO2, on coastal ecosystems, and are working to develop countermeasures (mitigation and adaptation measures) through the understanding of the current situation and future predictions. I am also conducting researches to clarify the local impacts of extreme events such as storms and marine heat waves, which are expected to increase in frequency and intensity as climate change progresses, on coastal ecosystems. I believe that the qualities necessary for interdisciplinary research are “physical strength, curiosity, imagination, and common sense,” and try to cultivate these qualities by going out of the lab as much as possible on weeknights and weekends. Easier said than done...


    If you are a student who is interested in entering graduate school and conducting research on the assessment, projection, and countermeasures for the impacts of climate change on marine ecosystems, fishery resources, and coastal communities, please feel free to contact me.


    Researchmap: https://researchmap.jp/9153


    Facebook: https://www.facebook.com/profile.php?id=100005209051042

    URL

    http://www.icrc.aori.u-tokyo.ac.jp/member/fujii.html