* represents those who will not accept new students.

Complexity Platform

Kunihiro Lab. Cryptology,Information SecuritySee Details
Assoc. Prof. Noboru Kunihiro(Full-time)
Tel. 04-7136-3934


Cryptanalysis on public key cryptosystems and related schemes.

Sato Lab. Statistical Machine Learning, Bayesian EstimationSee Details
Lecturer Issei Sato(Full-time)

Statistical machine learning as social infrastructure

Machine learning is a technology for a machine to automatically learn a rule for Intelligently information processing by using a large amount of data. For example, machine learning has played an important role in a real life such as a face recognition in a smart phone, a recommendation system in on-line shopping site, and automatic car driving. In our laboratory, we are studying the following theme.

(1) Mathematical modeling
In statistical machine learning, we have to design a mathematical model for data and problems to slove. We are studying a statistical model with a latent variable that represents a hidden property in data.

(2) Learning algorithm
Learning is formulated as a parameter estimation of mathematical models. We are studying a fast algorithm to estimate model parameters from a large amount of data. In particular, we focus on a learning algorithm based on the Bayes estimation.

(3) Experimental design for statistical machine learning by statistical machine learning
Regardless of statistical machine learning, it takes longer times to perform experiments in many scientific fields. We are studying a support system for researchers' experiments with long times. Our system can perform trial and error in experiments instead of a researcher.

(4) Social application
We are applying our work and recent technology of machine learning to social problems. For example, we are developing a supporting system for a medical image analysis collaborating with the University of Tokyo hospital.

Sugiyama Lab. Machine Learning, Statistical Data AnalysisSee Details
Prof. Masaahi Sugiyama(Full-time)
Tel. 03-5841-4106

Machine Learning:
Developing a Computer That Learns Like Humans

Together with the rapid progress and spread of the Internet and sensor technology, vast amounts of data are collected in various fields of engineering, industries, and natural sciences such as speeches, images, texts, movies, social media, E-commerce, power networks, medicine, and biology. To create new value from such big data, machine learning plays a central role.
Machine learning is aimed at developing a computer that learns like humans. Our group studies various aspects of machine learning and statistical data analysis such as fundamental theory, practical algorithms, and application to real-world data analysis.

Honda Lab. Statistical Machine Learning, Adaptive Decision Making紹介を見る
Lecturer Junya Honda (Full-time)

How to Explore and Exploit Valuable Data

Machine learning to retrieve important information from big data is recently becoming a common technology in wide areas. On the other hand, there are many situations where we have to take a decision on some problem without sufficient data. For example in the advertisement systems, one cannot know the click-through rate of an ad unless displaying it whereas it is a loss to display an ad with low click-through rate many times. Another example is development of new drugs or materials. In this problem it takes some days to compute property of one candidate and it is necessary to choose a promising candidate appropriately by some mathematical model to fully utilize limited resources.

Our laboratory researches this problem of decision making with dynamically gathered information from the viewpoint of, such as, bandit problems and Bayesian optimization. In this problem we face two different aspects, that is, the statistical aspect to realize good estimation from gathered data, and the algorithmic aspect to determine the next action for improvement of estimations and rewards. How to combining these aspects is the challenging and interesting point of our problem.

Yamamoto Lab. Information Theory
(Data Compression, Error Correcting Code, Cryptology)See Details
Prof. Hirosuke Yamamoto(Full-time)


Information Theory (Shannon Theory, Multiterminal Information Theory, Rate-Distortion Theory, Information Spectrum Theory, LDPC code, Network coding, etc.) Cryptology (Information-theoretic Cryptology, Secret Sharing Schemes, Visual Cryptography, Broadcast encryption, etc.) Data Compression Algorithms

Brain-Bio Module

Okada Lab. Brain Science,Information Statistical Mechanics,
Quantum Calculation, Nonliner DynamicsSee Details
Prof. Okada Masaoto(Full-time)
Tel. 04-7136-4085


Theoretical neuroscience, Statistical physics

Shinoda Lab. Haptics, Tactile, Sensing,
Human Interface, Network, Physical InformaticsSee Details
Prof. Hiroyuki Shinoda(Full-time)
Tel. 04-7136-3900


We investigate technical and scientific issues related to haptics. Our goal is to develop a human activity support system while clarifying the physical mechanisms of the human tactile organ and relationships between haptic stimulation to humans and human responses in physical actions and mental statuses.
Two-dimensional communication:
This relates to research on signal and power transmission with electromagnetic waves traveling along a thin sheet. The technology enables a wireless and battery-free information environment that provides safe wireless power transmission to items touching the sheet and high-speed signal transmission with low interference from ordinary wireless signals. This technology also contributes to wearable computing and sensor embedding in various elastic materials.

Nose Lab. Brain-Neuro Science Exp., Biophysics, Molecular BiologySee Details
Prof. Akinao Nose(Full-time)
Tel. 04-7136-3919


We are interested in the mechanisms of how the neural circuits develop and function to generate specific behavior, by using the nervous system of the fruit fly Drosophila as a model. In this organism, the relative simplicity and highly sophisticated genetic techniques allow one to identify and manipulate specific neurons. We focus on the larval peristalsis (waves of muscular contraction that propagate along the body) and try to understand how the motor outputs are generated by the neural circuits. For this, we use a variety of genetic and biophysical techniques. For example, we use calcium imaging to record the activity of specific population of neurons. By using a recently developed technique, called optogenetics, we manipulate the activity of specific neurons with light at high resolution. By recording and manipulating the spatio-temporal pattern of neural activity, we aim to understand the operational principle of the neural circuits.

Makino Lab. Haptics, Tactile Sensor/Display, Tactile Info. Process,
Human InterfaceSee Details
Assoc. Prof. Yasutoshi Makino(Full-time)
Tel. 04-7136-3912


Tanifuji Lab.(Riken) Cerebral Physiology, Biophysics,
Fused brain measurement scienceSee Details
Visiting Prof. Manabu Tanifuji(Cooperative)
Tel. 048-462-1111


Fukai Lab. (Riken) Computer Nuroscience, Neural Information,
Neural Circuit ModelSee Details
Visiting Prof. Tomoki Fukai(Cooperative)
Tel. 048-467-6896


Kohsaka Lab.  Neuroscience, Neural circuits for locomotionSee Details
Lecturer Hiroshi Kohsaka(Full-time))

Decoding physical basis for motor circuits.

The world is full of moving objects. Among them, animals are a special group that have survived and evolved on the earth. The most conspicuous property of animals is that they possess networks of neurons (“neural circuits”) in the body. Although these networks are just a cluster of electrically-charged cells, neural circuits have an amazing ability of conducting multiple tasks including detecting the surrounding physical world by sensory networks, changing neural circuit states by internal network dynamics, and generating adequate motor outputs by muscle contraction. How neural circuits generate coordinated and coherent activity patterns is a fundamental question in neuroscience. Recent technical advances in genetics, optical control, and image analyses enable dissecting how neural circuits work in cellular level. In our lab, in collaboration with the Nose Lab, we study physical basis in locomotion control by applying state-of-the-art techniques to fruit fly larvae. Because neuroscience is interdisciplinary, we focus on multiple axes in multiple scales:

 1) Spatial scale axis: DNA, proteins (nanometer); synapses, cells, circuits (micrometer), whole animal (millimeter), and animal populations

 2) Time scale axis: neuronal activity (millisecond), circuit dynamics (second), motor control (minute), and evolution/speciation

 3) Concrete-Abstract axis: from identification of genes and interneurons to construction of neural circuit models Based on these multiple perspectives, we are currently searching for key interneurons in the motor circuits and examining the mechanical dynamics of their motor outputs. The goal of our study is elucidating the physical basis for motor circuits by constant efforts and openminded thinking.

Astrobiology Module

Imamura Lab.  Planetary exploration, Planetary atmospehres See Details
Prof. Takeshi Imamura (Full-time)

"Physics of planetary atmospheres and climate system"

The circulation of energy and substances in a planetary atmosphere controls the development of the planetary environment, thereby governing the possibility of a biosphere. The planetary atmospheres observed so far show surprising diversity, whose origin is still unclear. Our laboratory focuses on planetary atmosphere physics and resultant climate formation. The ultimate goal is general understanding of common physical processes behind the apparent diversity. The following observational and theoretical approaches are ongoing.

 (1) Exploration of planetary atmospheres
Exploration of Venus atmosphere by a Japanese Venus explorer AKATSUKI is ongoing. We use AKATSUKI's data to unveil the mysteries of Venusian meteorology such as the high-speed westward circulation "super-rotation" and thick sulfuric acid clouds. Development of a Mars exploration program including the studies of water cycle and dust transport is also ongoing.

 (2) Radio occultation observations
In a radio occultation experiment, a spacecraft transmits radio waves toward a tracking station on the earth and sequentially goes behind the planet's atmosphere; during such occultation events the planetary atmosphere cause frequency and amplitude fluctuation, from which information on the atmosphere is obtained. We apply this technique to planets and the solar corona.

 (3) Numerical modeling
Common physical processes behind the apparent diversity of atmospheric phenomena on the planets are investigated with numerical modeling and theories.

Yoshikawa Lab. Planetary Science, Magnetosphere Physics,
Exploration of the Solar System, Exploration of ExoplanetsSee Details
Prof. Ichiro Yoshikawa(Full time)
Tel. 04-7136-5520


 地球が,豊かな生命の星でいられるのはなぜだろうか? 私達は,地球のこと,太陽系のこと,宇宙のことをどれだけ理解しているだろうか? 生命が生きてゆくには,湿潤な環境と宇宙放射線から体を守るバリア(惑星磁場)が必要である. 太陽から程よい距離にできたことが,地球における生命発生の理由の一つだが,大気はいつ発生し,湿潤な環境はどのように維持されてきたのだろうか? 火星や金星は生命にとって,どれほど苛酷な環境なのだろうか? 地球の大気環境は変化しないのだろうか? 火星のようになったりしないだろうか?
これらの謎と大気の多様性を解明するために,我々の研究室では,目に見えない特殊な光を用いた観測機を開発している. この観測機を太陽系内惑星探査機や宇宙ステーション,地球を周回する衛星に搭載し,太陽系惑星を走査し,惑星大気の成分や運動を分析する.
2013年9月にイプシロンロケットで打ち上げられた惑星分光観測衛星「ひさき](SPRINT-A)は,極端紫外光の目を持つ “宇宙望遠鏡” である. 極端紫外光は,紫外線の中でも波長の短い光で,この光で見た地球は,ふだん私たちが見ている青くて丸い地球とはずいぶん違って見える. 例えば,北極と南極を付け根にして,地球半径の5~6倍の空間に広がる蝶のような姿(双極子磁場)に満たされたプラズマ(電離した気体)が写る.

Yoshioka Lab. Planetary exploration, Planetary science,Space physicsSee Details
Lecturer Kazuo Yoshioka(Full-time)

Under construction
Tanaka Lab. (JAXA) Planetary Science, Moon Planetary ProbeSee Details
Visiting Assoc. Prof. Satoshi Tanaka(Cooperative)
Tel. 050-3362-4196


 世界に比類がなくわが国独自の月惑星探査を遂行するための探査機器の開発およびプロジェクトの遂行を行っている. これまでJAXA(宇宙科学研究所)において「かぐや」,「はやぶさ」などの月惑星探査を成功させてきたが, それらに続くものとして月着陸探査ミッション(SELENE-2)やC型小天体サンプルリターンミッション(はやぶさ2)などが進められている. これらのミッションの科学的側面から探査戦略の追及,それを実現するたの搭載器機の性能をつきつめて実現化し, 世界トップクラスと賞されるだけでなく将来にわたって活用し続けられるデータの取得を目指す.

 これからの月惑星探査の主流は内部構造探査である.これを遂行するための搭載インフラや機器(地震計や熱流量計)の開発が重要である. 我々は長年にわたり地震計などを搭載可能なペネトレータとよばれる高速貫入型の観測装置の開発に携わり,技術的に高いレベルにまで完成させた. 我々が開発したこの装置を月惑星に送り込んで内部構造に関するデータを取得し,月惑星の起源と進化に重要な制約条件を得ることが私の究極的な目標である.

 科学的な専門分野は月惑星内部構造論であり,アポロミッションで得られた地震(月震),熱流量などの地球物理学的観測データの解析を行っている. 40年前に取得されたデータでありながら,まだ我々が見出していない真理がまだ多く埋もれているのは驚きでもありまた感動的でもある.

Miyamoto Lab. (The Univ. Museum, The Univ. Tokyo) Solar System,
Planetary Georogy, Numerical. Fluid Mechanics, Planetary ExplorationSee Details
Assoc. Prof. Hideaki Miyamoto(Adjuct)
Tel. 03-5841-2830


 惑星探査技術の進歩により,太陽系の天体に探査機を送り込んで調査することが可能となった. 火星探査車は砂だらけの火星表面を走り回り,小惑星探査機は,弾丸を使って岩石を破砕し岩石サンプルを収集した. 人類は,こうした太陽系の直接探査を通じて地球外の天体に関する情報を猛烈な勢いで獲得している. 太陽系科学は,革命的な発展を遂げていると言って良い.

 私たちの研究室では,太陽系探査に直接関連した,以下の2つの方向性の研究を推進している. 1つ目は,探査データの解析である. 特に天体の表層環境に関する研究に重点を置いており,主に固体天体表層地形の解析を通じて,地球表層環境の持つ普遍性と特異性を明らかにするという, 比較惑星学(特に惑星地質学)分野の研究を行っている. 「人類が地球に誕生した事に必然性が存在するか」というアストロバイオロジーの大問題に,惑星探査データの解析から迫ろうとしているとも言える.

 2つ目は,惑星探査計画への参画である.これまで火星探査機「のぞみ」や小惑星探査機「はやぶさ」,月探査機「SELENE」などの固体惑星探査プロジェクトにおいて微力を尽くしてきたが, 現在は次期小惑星探査計画や月探査計画に参加すると共に,杉田研究室などと共同で,火星着陸機を中心とした複合探査計画を推進している.

 こうした研究を進めるには,前者は理学,後者は工学のセンスが重要となるが,実際には双方の知識が必要となる. これらを融合したアプローチを創出し,複雑系という枠組みで新たな太陽系科学を創成することが,私たちの大きな目標である.

*Sugita Lab. (Dep. Earth and Planetary Science, Grad. Sch. Science)
Planetary Science, Earth Initial Evolution, Super High Speed Phys.,
Super High Speed Collision Phys.See Details
Prof. Seiji Sugita(Adjunct)
Tel. 04-7136-5520


 私は,惑星の起源と進化を理解するため,室内実験と惑星探査の両面から研究を行っている. 室内実験では,惑星初期進化で支配的な役割を果たした小天体衝突の機構解明に力を注いでいる. 地球の基本形が作られた地球集積期やその直後の時代の表層環境の解明が目的である. 特に,大気圏や水圏の質量と組成を決定する衝突蒸発現象機構の解明のため,高速度衝突実験と高速分光計測を用いた研究を行っている. こちらは,自分だけの自由な発想で行えるタイプの研究である.

 惑星探査は,他の惑星や衛星を調査して,地球との違いを明らかにすることが目的である. 2014年の打ち上げを目指す「はやぶさ2」計画に参画し,可視分光カメラ開発のサイエンス担当者を務めている. 米国がOSIRISRex計画を打ち出したので競争が大変だが,日本の計画を米国がまねた珍しいケースであり,競争の甲斐もある. どちらも水や有機物を豊富に含んだC型小惑星から試料を持ち帰る計画である. 可視分光カメラは小惑星上の物質分布や地形を調べ,どこから試料を採るか決めるための重要な情報を得る. こちらの研究は,大型プロジェクトの動向に左右されるリスクもあるが,宇宙を実感できるメリットがある.


*Sekine Lab. (Dep. Earth and Planetary Science, Grad. Sch. Science)
Earth-Planet Chemistry, Comparative Planetology,
Enviromental Evolution of Earth-Planet, AstrobiologySee Details
Assoc. Prof. Yasuhito Sekine(Adjuct))
Tel. 04-7136-3954


 「地球はどうして今の姿になったのか,宇宙に生命を宿す天体は存在するのか」という問いに答えることは,地球惑星科学のみならず21世紀の自然科学の大目標の1つです. 我々はこの問題に対して,惑星・衛星の大気海洋といった生命を育む表層環境が,どのように形成進化してきたかを化学的に理解することを目指し,以下のような研究を行っています.

1) 初期太陽系の化学:
 大気海洋,生命の起源に化学から迫るためには,それらを構成する炭素,窒素,酸素などの元素が,初期太陽系においてどのような分子種として分布し, 惑星に供給されるのかを知ることが必要です. 室内実験と理論計算を組み合わせることで,この問題の理解に迫っています.

2) 大気海洋の組成進化:
 太陽系初期に形成した惑星・衛星の大気海洋は,現在の姿になるまで酸化還元状態や化学組成を大きく進化させてきました. さらに近年,氷衛星の地下には,広大な液体の海が存在することが明らかになっています. 氷衛星環境の模擬実験や太古の地球の地質試料の化学分析により,生命生存可能な環境の化学進化や安定性を調べています. さらに得られた知見から,太陽系外の第2,第3の地球の大気や表層環境を予測します.

3) 探査による検証:

Tajika Lab. Earth and Planetary System Science, Comparative Planetology,
Evolution of Earth and Planetary Environments, AstrobiologySee Details
Prof. Eiichi Tajika(Cooperative)
Tel. 04-7136-3928


 地球や惑星の環境は,どのように決まっているのだろうか? 生命活動には液体の水が必須であるから,地球のような「海惑星」の成立条件を解明することは,太陽系外惑星系に第二の地球が存在する可能性を探るためにも必要不可欠である. 地球や惑星の表層環境の安定性・変動性・進化等について理解するためには,地球や惑星を大規模複雑系としてとらえる「地球惑星システム科学」のアプローチが有効である. このような視点から,本研究室では以下のような研究課題を推進している.

地球史を通じた地球環境の進化や変動 (とくに生物大量絶滅が生じた全球凍結イベント,小惑星衝突イベント,海洋無酸素イベントなど)を気候モデルや物質循環モデルを用いて解明する. また,野外調査や岩石試料の化学分析に基づいて,当時の地球環境変動の実態を明らかにする.

火星や金星の環境システムの挙動特性や気候変遷,太陽系外惑星系における惑星環境や生命生存可能惑星 (ハビタブル・プラネット)の存在条件などを,数値シミュレーションや理論的手法を用いて明らかにする.

Extreme Matter Module

Inomoto Lab. Plasma Phys., Nuclear Fusion Engineering, High-beta
[Nucl. Fusion Res. Edu. Program]See Details
Assoc. Prof.Michiaki Inomoto(Full-time)
Tel. 04-7136-4044


Nuclear fusion is a power source of active stars and future commercial power plants. Fusion reaction occurs in plasmas (hot ionized gases) under appropriate temperature, density, and confinement conditions. To develop smaller, more economical thermo-nuclear fusion reactors, we are making researches to achieve a magnetic configuration to sustain higher plasma pressure for a given magnetic field strength (i,e, high-beta plasma confinement). Since a spherical tokamak (ST) with a much tighter ring shape than a conventional tokamak provides both a high beta limit and good confinement, it is one of the promising candidates for an economical fusion reactor core in the future. We are developing a novel formation method of a high-beta ST by using a plasma merging scheme which utilizes magnetic reconnection as an effective conversion process from magnetic to plasma thermal energy. ST merging devices such as UTST and TS-4 are employed to conduct the experimental studies.

Ejiri Lab. Plasma Phys., Nuclear Fusion, Tokamak
[Nucl. Fusion Res. Edu. Program]See Details
Assoc. Prof. Akira Ejiri(Full-time)
Tel. 04-7136-3926

Passion and Insight! Aim the Nuclear Fusion with Us!

Plasma consists of charged particles, which generate electric and magnetic fields, and they interact via electromagnetic forces. In high temperature plasmas, however, low collisionality and low diffusivity prevent an equilibrium. From these two features, high temperature plasmas often become a nonlinear and non equilibrium system. One of the approaches for these issues is fluctuation measurements. In our laboratory, we are developing advanced diagnostics and analysis algorithms for fluctuation measurements, as well as conventional plasma physics. Our main target plasma is the TST-2 spherical tokamak plasma in our laboratory. In addition, we study also LHD plasma in Gifu, QUEST plasma in Fukuoka, LATE plasma in Kyoto, MAST plasma in UK as collaboration research.

Takase Lab. Plasma, Nuclear Fusion, Tokamak
[Nucl. Fusion Res. Edu. Program]See Details
Prof. Yuichi Takase(Full-time)
Tel. 04-7136-3925


In the plasma, which is a collection of charged particles, a variety of collective phenomena mediated by electromagnetic fields occur. In our laboratory, research on magnetohydrodynamic (MHD) instability, heating and current drive by high frequency waves, and energy and particle transport processes due to plasma turbulence, as well as development of high temperature plasma diagnostics based on various physical processes are conducted using the TST-2 spherical tokamak (photo) at the University of Tokyo. We foster world-class scientists through domestic and international collaborations on world-leading spherical tokamak experiments including MAST-U (UK) and NSTX-U (US). Furthermore, we provide scientific leadership on the JT-60SA Project, the flagship tokamak being constructed in Japan in collaboration with EU, and on the ITER Project, the international 'burning plasma' experiment being constructed in France.

Saiki Lab. Materials Science/Surface Science, Graphene, Organic Thin FilmSee Details
Prof. Koichiro Saiki(Full-time)
Tel. 04-7136-5526, 3903

I must be the only one in this whole wide world who knows of this phenomenon. That is the excitement and the true pleasure of scientific research.

Core Areas
  • Applied Physics
  • Solid State Chemistry
  • Materials Science
Research Interests
[A] Chemical synthesis of graphene (CVD, graphene oxide, doping, etc.)
  • Radiation-mode optical microscopy for growth analysis of CVD graphene
  • Development of doping methods to graphene lattice
  • Tuning of graphene electronic states by hetero-atom doping
  • Complete reduction of graphene oxide by plasma
[B] Solution processes of organic field effect transistors
  • Electric field induced position and orientation control of organic single crystals
  • Development of high mobility organic field effect transistors
Sasaki Lab. Surface Science/Catalytic ChemicalSee Details
Assoc. Prof. Takehiko Sasaki(Full-time)
Tel. 04-7136-3910


 物質変換の基礎となる触媒の開発・反応機構の研究・機能性界面の創成・表面科学的研究を行っている. また,これらの応用として,二酸化炭素の転換を様々な方法で行い,低炭素化に貢献するための研究を行っている.

 化学反応を実現する際には,多くの場合に触媒が不可欠となる. 特に,固体触媒は,生成物からの分離が容易で,再利用にも有利なことから実用的な意味が高い. 不活性分子の有用物質への変換を目指して,ナノ金属酸化物結晶,金属錯体をベースにした固体触媒,メソポーラス金属酸化物の開発を行っている.

 イオン液体は有機物であり,かつイオン対から構成される塩であることから物性のデザインが可能な溶媒として注目を受けている. 我々は,イオン液体分子を固体表面に固定化して(下図参照)固体触媒として有用であることを示している. イオン液体は二酸化炭素との親和性が高いことからこの性質を利用した反応を開発している.

 電子線や光を入射することにより固体表面上の電子状態を励起することで,化学結合の切断や組み替えが起こる. これらのダイナミクスは光触媒作用とも直接かかわる重要なプロセスである.パルスの電子線,レーザーパルスを入射した後のイオン発生, 発光現象を時間分解測定するための装置開発,およびそれらを用いたダイナミクスの研究を行っている. また誘電体バリア放電による大気圧近傍のプラズマを利用した化学反応過程の研究を行っている.

 計算化学的手法は現在非常に重要かつ有用なツールとなっている. 我々は,1)モンテカルロ法による固体表面上の吸着種の振る舞いと化学反応の記述,2)遺伝的アルゴリズムを取り入れたテンソルLEED法による複雑な固体表面構造の解析, 3)密度汎関数法による触媒の活性構造と反応過程の解明に取り組んでいる.


Okazaki Lab. (The Institute for Solid State Physics, The Univ. Tokyo)
Strongly Correlated Electron System, Superconductivity,
Photoemission SpectroscopySee Details
Project Assoc. Prof. Kozo Okazaki(Adjunct)
Tel. 04-7136-3367


Angle-resolved photoemission spectroscopy is a very powerful experimental technique that can directly observe a dispersion relation between momentum and energy of the electrons in solid-state materials, whereas by utilizing a femtosecond laser as pumping light and its high harmonic generation as probing light, we can observe ultrafast transient properties of the band structures in a non-equilibrium state. In our group, we are developing and improving a time-resolved photoemission apparatus that utilize high harmonic generations of an ultrashort-pulse laser in collaboration with a laser-developing group. We are aiming for understanding the mechanisms of electron relaxations from photo-excited states and mechanisms of photo-induced phase transitions by direct observations of transient electronic states with a pump-probe type time-resolved photoemission spectroscopy. Also, we are aiming for understanding the mechanisms of unconventional superconductivity by direct observations of the electronic structures and superconducting-gap structures of unconventional superconductors with a laser-based angle-resolved photoemission apparatus with a world-record performance that achieves a maximum energy resolution of 70 micro eV and lowest cooling temperature of 1 K.

Arita Lab.(RIKEN) Condensed Matter Physics,First-principles Calculation,Materials DesignSee Details
Visiting Prof. Ryotaro Arita(Cooperative)

『Designing Novel Functional Materials』

By means of first-principles calculation, we study non-trivial electronic properties of correlated/topological materials. We also aim at predicting intriguing phenomena originating from many-body correlations and designing novel functional materials/systems. The long-term goal of our research is to establish new guiding principles for materials design. We are also interested in the development of new methods for electronic structure calculation. Our recent research projects include

- Development of ab initio downfolding methods
- Superconductivity in iron-based superconductors, cuprates, fullerides, hydrides under high pressures
- Development of density functional theory for superconductors
- Interplay between the spin-orbit coupling and electron correlations in 5d electron systems
- Exotic electronic structure of skyrmion systems, Weyl semimetals, toporogical insulators
- Giant thermopower in transition-metal compounds
- Multi-pole physics in heavy fermion compounds