## Department of Complexity Science and Engineering, Graduate School of Frontier Scienses, The University of Tokyo <br> Graduate School Entrance Examination Problems for Academic Year 2021 Examination duration: 30 minutes

(Sample 1)

Answer the following questions. All the constants, variables, and functions given below are real.
(Q.1) Consider the surface $z=a x^{2}+y^{2}+2 x y-2 x$ on $x y z$-space in the Cartesian coordinate system,
where $a \neq 0$.
(i) Let $z=r x+p y+s$ be the tangent plane to the surface at $(x, y, z)=(1,0, a-2)$. Obtain $r, p$, and $s$.
(ii) Find the condition on $a$ such that the tangent plane obtained in (i) has an intersection with $x$-axis.
(iii) Suppose that the distance between the origin and the plane satisfying the condition (ii) is $\frac{1}{\sqrt{5}}$. Obtain $a$.
(Q.2) Consider matrices and vectors given by

$$
D=\left(\begin{array}{lll}
5 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right), \boldsymbol{v}=\left(\begin{array}{l}
0 \\
3 \\
1
\end{array}\right), A_{t}=D+t \boldsymbol{v} \boldsymbol{v}^{\top}, \boldsymbol{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

where $t$ is a positive real number and $T$ indicates the tranpose.
(i) Express the sum of all elements of $A_{t}$ in terms of $t$.
(ii) Let $b_{i j}$ be the $(i, j)$-th element of $A_{t}^{-1}$. Express $b_{11}$ and $b_{33}$ in terms of $t$.
(iii) Assume that $\boldsymbol{x}$ is a constant vector independent of $t$. Obtain the necessary and sufficient condition for $\boldsymbol{x}$ so that $\lim _{t \rightarrow \infty} \boldsymbol{x}^{\top} A_{t}^{-1} \boldsymbol{x}=0$.
(Q.3) Let $f(y)$ be a function $f(y)=y-y^{2}$.
(i) Obtain the constants $A$ and $B$ for the partial fraction decomposition $\frac{1}{f(y)}=$ $\frac{A}{y}+\frac{B}{1-y}(y \neq 0,1)$.
(ii) Obtain the general solution to the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=f(y)$. Use $C$ as an arbitrary constant.

## Department of Complexity Science and Engineering, Graduate School of Frontier Scienses, The University of Tokyo <br> Graduate School Entrance Examination Problems for Academic Year 2021 Examination duration: 30 minutes

 (Sample 2)Answer the following questions. All the constants, variables, and functions given below are real.
(Q.1) Consider a line $\ell: y=a x+b$ on $x y$-plane, where $a$ and $b$ are real numbers.
(i) Suppose that the distance between the point $(0, q)$ and the line is $2 / \sqrt{a^{2}+1}$, where $q$ is a real number. Find the value of $q$.
(ii) Suppose that $\ell$ is the line that fits the three points $(1,0),(0,-1)$, and $(2, p)$ obtained by the least squares method, where $p$ is a real number. Express $a$ and $b$ in terms of $p$.
(iii) Find the point through which the approximate line obtained in (ii) passes for any $p$.
(Q.2) Consider matrix $A$ with its inverse $A^{-1}$ and vectors $\boldsymbol{a}$ and $\boldsymbol{x}$ in the Cartesian coordinate system given by

$$
A=\left(\begin{array}{lll}
1 & 0 & 1 \\
3 & 1 & 0 \\
0 & 2 & 1
\end{array}\right), A^{-1}=\frac{1}{7}\left(\begin{array}{ccc}
1 & 2 & -1 \\
-3 & 1 & 3 \\
6 & -2 & 1
\end{array}\right), \boldsymbol{a}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \boldsymbol{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) .
$$

Let plane $S$ be the set of points $\boldsymbol{x}$ satisfying $\boldsymbol{a}^{\top} \boldsymbol{x}=1$, where $\top$ indicates the transpose.
(i) Let $S^{\prime}=\left\{\boldsymbol{x}^{\prime}=A \boldsymbol{x}: \boldsymbol{x} \in S\right\}$ be the image of $S$ through linear mapping $f(\boldsymbol{x})=A \boldsymbol{x}$.
Obtain $\boldsymbol{b}=\left(b_{1}, b_{2}, b_{3}\right)^{\top}$ such that the plane $S^{\prime}$ is expressed by the equation $\boldsymbol{b}^{\top} \boldsymbol{x}^{\prime}=1$.
(ii) Obtain the coordinates of the foot of the perpendicular from the origin to $S^{\prime}$.
(iii) For $c>0$, let $T$ be the three-dimensional ellipsoid described by the set of points $\boldsymbol{x}$ satisfying $\boldsymbol{x}^{\top} A^{\top} A \boldsymbol{x}=c$. Obtain $c$ such that $T$ is tangent to $S$.
(Q.3) Let $f(y)$ be a function $f(y)=1-\frac{1}{4} y^{2}$.
(i) Obtain the constants $A$ and $B$ for the partial fraction decomposition $\frac{1}{f(y)}=$ $\frac{A}{1+\frac{y}{2}}+\frac{B}{1-\frac{y}{2}}(y \neq \pm 2)$.
(ii) Obtain the general solution to the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=f(y)$. Use $C$ as an arbitrary constant.

