Kashiwa Campus Guide

Graduate School of Frontier Sciences
The University of Tokyo

ACCESS

From Kashiwa Interchange:
Exit the Jalan Expressway Kashiwa Interchange via the Chiba-bound exit and go on National Road 18. Cross 500 meters to the intersection and follow the Transdisciplinary Approach & Intellectual Adventure on the right.

Tokyo Express
From Kashiwanoana Campus Station:
- Shuttle Bus
 - Kashiwanoana Campus Station to Kashiwa Campus
- Regular Bus Service (Bus stop #1 outside West Exit)
 - Kashiwanoana Station
 - Kashiwanoana Station
- Taxi
 - Approx. 6 minutes from the West Exit of Kashiwanoana Campus Station

JR Jōban Line / Tobu Blue Line
From Kashiwa Station:
- Regular Bus Service (Bus stop #2 outside West Exit)
 - Kashiwanoana Station
 - Kashiwanoana Station
 - Kashiwanoana Station
 - Kashiwanoana Station
 - Kashiwanoana Station
- Taxi
 - Approx. 10 minutes from the West Exit of Kashiwa Station

Administrative Office, Graduate School of Frontier Sciences: 5-1-5 Kashiwanoana, Kashiwa-shi, Chiba-ken 277-8561 TEL: 04-7164-3800 FAX: 04-7164-3820 2017.06
The Transdisciplinary Approach: A Creative Force

The Graduate School of Frontier Sciences (GSFS) is a school for Master and Doctoral students that was established through comprehensive cooperation of all existing departments of the University of Tokyo. It is made up of the Division of Transdisciplinary Sciences, the Division of Biosciences, and the Division of Environmental Studies. All of them share the mission of solving the challenging problems facing humankind through the pursuit of education and research on the frontiers derived from established disciplines. This undertaking is courageously carried out using transdisciplinary approaches in which the school’s departments are organized to cover a broad crossproperty of research topics, under the leadership of diverse and experienced faculty members from not only the University of Tokyo, but also other research and educational institutions around the world. About 7,900 students have completed the school’s program, and about 1,300 students are currently enrolled in its departments.

Milestones
- Apr 1999: Graduate School of Frontier Sciences founded.
- Apr 1999: Student enrollment begins.
- Mar 2001: Graduate School Building-1 completed.
- Apr 2003: Division of Transdisciplinary Sciences Building and construction begins.
- Apr 2004: Department of Computational Biology established.
- Apr 2004: Department of Medical Genome Sciences launched.
- Oct 2004: Kashiwa Research Campus construction completes.
- Apr 2005: Research Center for Total Life Health and Sports Sciences established.
- Mar 2006: Construction of Environmental Sciences Building begins.
- Apr 2006: Department of Urban Technology Policy and Environment established.
- Jun 2006: Graduate School of Frontier Sciences' administrative office moved to Graduate School of Engineering.
- Apr 2009: Koriyama Center established.
- Apr 2011: Functional Precision Center established.
- Dec 2011: TICC (Tokyo Institute of Courtship) Center for Complex Systems established.
- Apr 2015: Graduate School of Frontier Sciences established.

Tripolar Structure

The Kashiwa Campus focuses on traditional studies in specialized fields and on intensive development of those areas, while the mission of the Komaba Campus is to pursue interdisciplinary education and research. In contrast, the goal of the Hongo Campus is to pursue “intellectual exploration” by going back to the basics of existing disciplines and interacting them into a transdisciplinary synthesis of education and research. The addition of the Kashiwa Campus to the alliance formed by the former campuses completes the University of Tokyo’s vision for a tripolar structure.

Serving society through regional collaboration, university-industry partnerships, and international exchange

Working together with the cities of Kashiwa and Narabigawa, Chiba Prefecture, Chiba University, and local businesses, the Graduate School of Frontier Sciences actively engages in regional collaboration, university-industry partnerships, and international exchange in order to put its research achievements to work for society. As part of this mission, several major projects have been launched to use GSFS technologies to develop the Kashiwa area into a smart city that is friendly to seniors and the environment, starting with the founding of the Urban Design Center (Kashiwa-no-ha UDC) in 2006, and followed in 2008 by the opening of the University of Tokyo Future Center (UTC) and the formation of Kashiwa-no-ha International Campus Town Initiative. This effort is further supported by the designation of Kashiwa City as an ITS (Intelligent Transport System) Model City in 2009, and as a hub for the Comprehensive Special Zone for Regional Revitalization in 2011. Also, pilot studies are being conducted to identify technologies necessary for smart cities, and these technologies will be translated into new export industries. As a hub for regional collaboration, the UDC hosts seminars for local residents, student-led events, and other such activities at its facility, which is located near Kashiwa-no-ha Campus Station. The UTC, which serves as a center for pilot studies, opened an office near that station in 2012, and constructed a 1,000-square-meter research building in 2013. In the academic year 2017, GSFS projects in partnership with industry include the incubation of U-Launch ventures, which are run mainly at the Triadic Tech Plaza (Chiba Prefecture) and the Tokyo Kaiho Venture Plaza (Kawasaki, Japan). As part of efforts to foster international exchange, the International Center, Kashiwa Office provides international students and researchers with support services for visa procedures and local life in Japan. In addition, Kashiwa II Campus has dormitories for international students and researchers that are designed to be an “International Village” where people from around the world live and learn together.

Facilities

* JAXA, Japan Aerospace Exploration Agency
Division of Transdisciplinary Sciences

Department of Advanced Materials Science

The Department of Advanced Materials Science is established as a center for education and research in materials science, with the founding faculty drawn from the University of Tokyo's Faculty of Engineering, Faculty of Science, and Institute for Solid State Physics. By strengthening our partnerships with RIKEN and other external research organizations, we seek to unlock the hidden potential of materials through research led by professors who have attracted global attention for their work in a new materials development, process technologies, and nanotechnology-based advanced metrology, including such as soft matter, quantum information, semiconductors, plasma materials processing, single molecule reaction control, measurement, ultrahigh-sensitivity laser spectroscopy/multifunctions, a synergized X-ray radiation measurement, and advanced measuring techniques based on nanotechnology. At the same time, we strive to create foundational technologies for the 21st century through mechanisms elucidation and theory construction for various phenomena, invention of new devices, and establishment of innovative materials measurement techniques. We provide students with ample opportunities to take lecture classes and seminars in materials science, all the way from the fundamentals to the advanced level, under the guidance of our distinguished faculty, which includes international members. In doing so, we put students in direct contact with the forefronts of materials science across the spectrum from basic science to applications in engineering. This comprehensive educational and research environment is guaranteed to reward students with a satisfying graduate study experience, so come join us and set sail for the fascinating world that awaits you.

Department of Advanced Energy

The Department of Advanced Energy transcends the boundaries of contemporary energy engineering to pursue pioneering research on emerging fields of energy engineering for the future. Our comprehensive program of education and research explores energy with a transdisciplinary approach that spans space energy systems engineering, advanced structural materials engineering, applied superconductivity engineering, electromagnetic energy systems engineering, control engineering, plasma science and engineering, nuclear fusion engineering, and other energy-related fields.

Specifically, our activities include basic research on such areas as generation/conversion of control of energy under extremely high-temperature (e.g., plasma) high-enthalpy conditions, extreme structural materials engineering, efficient utilization/storage of energy for transport of energy, superconductivity-based utilization of high magnetic fields, solids/lasers plasma physics, and nonlinear phenomena, and applied research on such fields as R&D on plasma fusion energy and future space transport vehicles, resource and environment-conscious energy systems, space environment exploration, smart structures/materials, tokamak plasma formation/merging, superconducting magnetic levitation, smart grids, electric vehicles, and various power supply systems. In order to develop individuals capable of taking up the many radical challenges related to energy, we constantly pursue advanced research projects and cultivate an international, transdisciplinary research environment.

Department of Complexity Science and Engineering

The Department of Complexity Science and Engineering was established with the aim of investigating various problems related to complexity through an unprecedented approach that integrates science and engineering, and training scientists and engineers who can contribute to the paradigms of complexity science and engineering. We are now confronted with situations in which a variety of complex phenomena, which are invisible to simple rules, exist in both natural and artificial systems. Furthermore, through the emergence of new nonlinear concepts such as chaos and fractals, it is becoming obvious that dynamically and computationally complex systems, in which various nonlinear elements strongly interact with each other, are ubiquitous in this real-world, and it is widely speculated that understanding such complex systems can create new areas of science and technology for the 21st century. We strive to innovate new complexity sciences and technologies by taking a transdisciplinary approach to multiscale compressive ranging from the nano to cosmic levels, mainly through our three modules of “Brain,” “Astro,” and “Systems Matter.” We also seek to construct a “Complexity platform” founded on the theories and techniques common to these three modules, including those pertaining to mathematics, information, visualization, and machine learning, with the aim of advancing research and human resource development for opening up new frontiers.

Education Program

Nuclear Fusion Research Education Program

Nuclear fusion is the ultimate energy source for humankind, offering environmentally friendly energy derived from abundant resources. Japan is producing remarkable results in nuclear fusion research, and is playing a leading role in advancing ITER, an international project aimed at realizing nuclear burning plasma. The Nuclear Fusion Research Education Program was established at the QS3 in 2006 by the Department of Advanced Energy and the Department of Complexity Science and Engineering in order to nurture a steady stream of talented human resources to serve as global leaders in future nuclear fusion research. This program is steadily building up a strong track record in nuclear fusion-related education and research through its two core curricula—the Transdisciplinary Education Curriculum, which provides comprehensive, systematic education in a broad array of basic sciences, and the Practical Research Education Curriculum, which involves pursuit of advanced research projects.

Education Program

Education program for High Dimensional Data Science

With the rapid emergence of data science, there is a growing need for new methods and approaches in transdisciplinary research. Our program aims to train individuals who can apply advanced transdisciplinary methods to solve complex problems in various fields. The curriculum is designed to be flexible, allowing students to choose courses that best fit their interests and career goals. The program emphasizes the integration of data science with other disciplines, fostering a transdisciplinary approach to research.
Division of Biosciences

The 21st century—often dubbed the era of biosciences—is ushering in new trends in medicine, agriculture, and other areas as fresh insights and discoveries revolutionize our understanding of life. This Division cultivates the individuals who will pioneer the new field of life sciences.

The Department of Integrated Biosciences introduces the fundamental prokaryotes and associated mechanisms of life phenomena based on genomic information, and uses the knowledge gained from this research to examine the universality and diversity of life, the cooperativeness and competitiveness of organisms, and the origin and evolution of life, and other such themes from the perspective of structure and function. Our Group of Biosciences on Structural Aspects, which adopts the structural approach, conducts investigations and applies research on the basic principles behind life phenomena, concentrating on the form and composition of biopolymers—the fundamental molecules of life forms—and the low-molecular weight organic compounds that interact with them. Taking the perspective of function, our Group of Biosciences on Functional Aspects focuses on the action and capabilities of organisms as we seek to shed light on unknown complex biochemical reactions by analyzing them from various points of view, from the molecular and cellular level to the tissue and the individual.

In order to provide a program of research and education that stays in step with the rapid growth of the biosciences, our faculty is composed of a diversified and experienced individual faculty from preeminent university departments, including Science, Agriculture, Engineering, and Medicine. Guided by the agreed principle that our research and education should be groundbreaking, transdisciplinary endeavors, we intend to cultivate individuals who will contribute to the realization of bioscience challenges, and to create new-generation biosciences that will repopulate life from the molecule to the individual through a full array of research, from basic to applied. The biosciences are now called upon to blow a bell for the post-genomic era, and an indispensable part of fulfilling that task is to pool the knowledge and expertise of scientists from a variety of academic backgrounds. The Kashiwa Campus, founded on the concept of cross-disciplinary education and transdisciplinarity, is just the right place for meeting this challenge of the times.
Division of Environmental Studies

Department of Natural Environmental Studies

We explore relationships between the natural environment and human activity to form a better environment.

The natural environment consists of two components: (1) the biophoric environment comprising the geophysics, the atmosphere, and the hydrophysics, and (2) the biological environment populated with living organisms, such as plants and animals. Together these two components provide a platform for biological activity to form the global ecosystem, in which matter and energy are cyclical between both sides. Moreover, this life-supporting system serves as the foundation for human existence and culture. Currently, human impacts disrupt ecosystem structures and functions, leading to considerable deterioration of the global environment. An effective response to this decline requires, first, the formulation of policies to protect the global ecosystem based on a suitable assessment of the interaction between the natural environment and human activity, including the understanding of natural environment structures and functions and the state of their change. Secondly, the measures must be designed to fully tap into nature’s own power for sustaining the environment.

The Department of Natural Environmental Studies engages in research on the global terrestrial and marine environments. We perform observations and surveys to illuminate and evaluate the natural environment’s structure and functions, and the processes of transformation due to human impact. Our research is based on the feedback between theory and experiment: we conduct theories directed to improve the environment, and then verify these theories with experiments and surveys. At the same time, we provide a balanced program of environmental education, which takes a practical, functional approach to building up research competencies through trial and error. Our goal is to prepare individuals capable of designing systems, which will embrace this type of education.

Department of Environment Systems

Developing and assessing systems for innovating the ideal 21st century society.

Production of artificial materials, discharge of wastes, and development of earth’s surface, underground and ocean have significantly affected environment systems which are composed both by natural environments and human societies, and have degraded the wealth of ecosystems and the quality of life. To tackle and overcome these problems, it is important to understand material and energy cycles, and to clarify the interaction among sub-systems which constitute the environment system. In addition, it is highly expected to develop problem-solving methodologies and their application through detailed study by scientific and engineering approach together with the integration of economics, policy science, and international cooperation. The viewpoints of risks and safety are also of fundamental importance. Department of Environment Systems conducts research and education to design and realize the sustainable societies by analyzing the interaction and relationship between human societies and natural environment, developing the model to represent the environment systems based on the detailed analysis, clarifying the causes of the problems using the system model, and mediating the possible solutions and the way to manage the system.

In our curriculum, lectures are categorized into two programs, the Environment (Engineering Training Program) and the Environment Manager Training Program. The former cultivates the engineering students needed to find technical solutions to environmental challenges, while the latter develops the foresight needed when making political decisions or managing environmental risk as a government officer or a business manager. We also have a Research Institute to help students to grasp the actual state of the environment, and a laboratory named “Transition to a Circular-Oriented Society,” which we jointly offer with the National Institute of Environmental Studies.

Department of Ocean Technology, Policy, and Environment

We aim to develop human resources who contribute to the resolution of 21st century challenges through the ocean.

Converting nearly 70% of the earth’s surface, the ocean is expected to play a vital role in resolution of various global challenges faced by 21st century society, including the need to preserve the environment and secure a renewable supply of food, water, resources, and energy. The Department of Ocean Technology, Policy, and Environment engages in the following areas of education and research guided by its vision that the ocean is the foundation of Japan’s society and a critical source of international competitiveness for Japanese industries.

- Strengthening the supply of food, mineral resources, and energy through utilization of marine resources
- Ensuring safety and security by strengthening marine observation for supporting marine resource utilization, coastal disaster prevention, and maritime safety, and by gaining greater understanding of the global environment
- Human-environment coexistence necessary for sustainable development, ocean recycling, creation, and low-environmental-impact or environments-impact-reducing marine activities
- To endow to foster human resources capable of contributing to ocean-related policymaking, industrial development, and environmental protection through ocean-related policies and marine environment policies, using their strong expertise and international perspective derived from study of marine resource development, marine energy utilization, marine environment preservation, and from their experiences in conducting experiments in water tanks and field observations on the ocean.
- Our educational program includes efforts that transcend the boundaries of ocean-related fields, such as a course collaboratively taught with the Institute of Industrial Science, the Japan Agency for Marine-Earth Science and Technology, and participation in the University of Tokyo Ocean Alliance.

Department of Human and Engineered Environmental Studies

We work to solve population aging-related challenges and realize a low-carbon society.

Two of the most important challenges now facing industrialized nations are coping with population aging and reducing carbon emissions. Japan, as a country with the most eminent expertise in addressing these two issues, is being mindfully followed by other countries in the world. Our educational program includes efforts that transcend the boundaries of conventional technological development focused on individual issues. Rather, despite sets of technologies must be systematized, their impact on society must be evaluated, and social institutions must also be changed where necessary. Simultaneously, new independent technologies need to be developed to facilitate assessment using new types of indicators. The challenges posed by population aging include managing and improving health on a daily basis, enhancing medical and nursing care systems, upgrading the livability of our communities, ensuring social involvement, ensuring mobility, and providing assistance for elderly purchases. However, attempting to address them simply by augmenting existing technologies and systems is not a viable solution because it would lead to increased social cost and energy consumption. Hence, in the process of carrying out R&D for innovative solutions, the effectiveness and impact of new research achievement must not only be weighted in terms of the primary goal—improving the health and lifestyle of seniors—but also be evaluated comprehensively across many social dimensions, including energy information, logistics, and economy.

As for efforts toward building a low-carbon society, the focus should be not on freezing energy consumption through efficiency enhancements to existing equipment and devices, but on conducting R&D to create new elemental and system technologies promised on the population of future energy supply systems such as wind and solar power generation, smart grids, cogeneration, heat pumps, electric vehicles, and home fuel cells. Moreover, it is still to assess the elements that directly consume energy, such as information systems and physical distribution, and to constantly take into consideration the total energy consumption of the overall system. including the effects of population over time.

In our department, we integrate existing disciplines such as environmental science, informatics, and physics to pursue our research mission, which is to conduct R&D on the various elemental technologies necessary for realizing a low-carbon society and supporting the aging population. This is the only way to resolve the country’s challenges, which we are jointly carrying out with the National Institute of Environmental Studies.
Graduate Program in Sustainability Science - Global Leadership Initiative

http://www.sustainability.k.u-tokyo.ac.jp/gli

This program is designed for students who wish to engage in environmental policymaking and professional work as leaders in environmental management. Students are provided with opportunities to lead seminars and interact with faculty members, focusing on practical aspects of environmental management. The program offers courses in environmental science, policy, and management, covering topics such as environmental policy, sustainability science, and global leadership. Students are also encouraged to develop skills in critical thinking, problem-solving, and effective communication.

Graduate Program in Sustainability Science - Global Leadership Initiative (GSSI-GLD) Minor Program

http://www.sustainability.k.u-tokyo.ac.jp/gli

The GSSI-GLD Minor Program is designed for students who wish to gain a deeper understanding of sustainability science and global leadership. The program offers courses in environmental science, policy, and management, covering topics such as environmental policy, sustainability science, and global leadership. Students are also encouraged to develop skills in critical thinking, problem-solving, and effective communication.

Environmental Management Program

http://www.k.u-tokyo.ac.jp/ems

This program is designed for students who wish to engage in environmental management and policy. The program offers courses in environmental science, policy, and management, covering topics such as environmental policy, sustainability science, and global leadership. Students are also encouraged to develop skills in critical thinking, problem-solving, and effective communication.

Integrated Environment Design Program

http://www.k.u-tokyo.ac.jp/ems

This program is designed for students who wish to engage in environmental design and policy. The program offers courses in environmental science, policy, and management, covering topics such as environmental policy, sustainability science, and global leadership. Students are also encouraged to develop skills in critical thinking, problem-solving, and effective communication.

Environment Engineer Training Program

http://www.k.u-tokyo.ac.jp/ems

This program is designed for students who wish to engage in environmental engineering and policy. The program offers courses in environmental science, policy, and management, covering topics such as environmental policy, sustainability science, and global leadership. Students are also encouraged to develop skills in critical thinking, problem-solving, and effective communication.

Environment Manager Training Program

http://www.k.u-tokyo.ac.jp/ems

This program is designed for students who wish to engage in environmental management and policy. The program offers courses in environmental science, policy, and management, covering topics such as environmental policy, sustainability science, and global leadership. Students are also encouraged to develop skills in critical thinking, problem-solving, and effective communication.
Facilities

Research Center for Total Life Health and Sports Sciences

The rapidaging of Japan’s population amidst a drop in the birthrate has given rise to a number of problems that require urgent responses, including increased efforts to prevent lifestyle-related diseases and to keep the elderly from becoming bedridden. Consequently, one of the most critical challenges faced by modern society is to promote lifelong health and transform the populace into a community of physically independent, long-living individuals.

The Research Center for Total Life Health and Sports Sciences performs an extensive array of practical and applied studies with the aim of using the achievements of this research to benefit society by aiding athletes of all ages, as well as members of the general public, including children, adolescents, middle-aged adults, seniors, and those with weakened functional fitness. Specifically, we seek to help such people to enhance their physical abilities; maintain a healthy, active lifestyle; and enjoy a mentally and physically satisfying quality of life. As one example of our efforts to promote good health through community cooperation, we have set up Tokyo Gym across the city as a fitness center that provides seniors with physical conditioning through cognitive-motion training machines. In addition, we are actively engaged in helping to build a cheerful society of healthy, energetic seniors through our Kasahara Wellness Village Project, which is a program that teaches methods for aging in middle-aged and elderly people to exercise regularly and manage their dietary intakes.

Center for Omics and Bioinformatics

Omics is a new research field that plants and analyses all the biological data harvested from genomics, proteomics, and related disciplines to decipher complex biological processes. Global advances in ultra-fast DNA-sequencing technologies are dramatically revolutionizing the life sciences by accelerating biological data acquisition and analysis by two or more orders of magnitude over what was previously possible. The Center for Omics and Bioinformatics was established at the GSIP to lead this revolution at a facility equipped with some of Japan’s strongest capabilities in data production and informatics analysis. By developing various measurement/functional fusion technologies, we strive to blaze new paths in omics research, including genomics, transcriptomics, metabolomics, and epigenomics. We also endeavor to be a center for future-oriented genomics by taking a transdisciplinary approach beyond the life science field to encompass other disciplines, engaging in university-wide collaboration, and supporting or hyperspin conducting research involving partner institutions outside the university.

Bioimaging Center

A research center that studies biological phenomena through visualization

Visualization of invisible molecules has often led to scientific breakthroughs. Especially in the life sciences, there is a strong need to elucidate the molecular reactions as clues for understanding viability of cellular processes and the integrity of systems of tissues and organisms. Bioimaging is an attempt to collect the extensive information of molecules through visualization and thereby get information about precise biological systems. In order to understand complex biological phenomena, it is necessary to extract the essential information from the vast amount of information related to complex phenomena. The center was established in 2009 to bring together such pioneers and use their combined knowledge to elucidate the workings of complex, dynamic biological phenomena through bioimaging. Covering the four areas listed below, eighteen faculty members from seven GSIP departments are involved in the center’s efforts to explore new research fields with a transdisciplinary approach. While building close cooperation between our four units, we also seek to serve as a new driving force for uninhibited collaboration and for joint research with extramural research centers. At the same time, we implement educational programs designed to cultivate researchers with wide-ranging knowledge.

Functional Proteomics Center

Working together to build the foundation for drug discovery

The Functional Proteomics Center (FPC) aims to develop techniques for efficient discovery of protein targets controlling drug response and accelerate the development of new drugs. To achieve this goal, the FPC is focusing on the development of new functional proteomics technologies and applying them to various fields. The FPC pursues research that integrates target identification, protein production, interaction analysis, low molecular weight screening, informatics-based interaction prediction, and so forth, and plans to engage in research and development of equipment and informatics methodologies that can integrate analysis throughout and lower costs. In addition to conducting research, the FPC is looking to become directly involved in the drug discovery process by coordinating research with equipment manufacturers, pharmaceutical companies, and biotech firms.

TJCC (UTokyo-JAXA Center for Composites)

Seeking to create a science of intelligent manufacture of innovative composite structures

Japan is a world leader in the ability to manufacture and develop carbon fiber reinforced plastic (CFRP) for aerospace applications. Because of intense international competition, however, it is necessary to further set apart domestic CFRP production technologies and achieve high value-added for them by advancing Japan’s own brand of research and development with even stronger backing by science platforms. The UTokyo-JAXA Center for Composites (TJCC) utilizes distinctive advanced visualization technologies such as fiber optic sensor networks and computational science to expand technologies for manufacturing composite structures. TJCC pursues research and development that strives to create “intelligent manufacturing science” for Japan-style research and development that is supported by strong scientific platforms and does not depend on trial and error. Through this pursuit, the TJCC aims to strengthen the might of the aircraft industry (expanded application of CFRP to aircraft fuselages and engines), aid the development of a low-carbon society (reduction of the weight of aircraft, automobiles, ships, etc.), and improve safety and security of society (enhancing the reliability of aircraft, automobiles, ships, etc.).

Specifically, the TJCC pursues research on three themes that respond to the needs of industry and may evolve into scientific fronts: (1) molding and curing, (2) post-curing and strength assessment, and (3) maintenance and management (life cycle monitoring, quality assurance from molding-manufacturing to operation).

Campus Life

The Kasahara Library on Kasahara Campus offers students such amenities as spacious reading rooms and a media lab where various lectures are held. The university plans to open up a new welfare facility at Kasahara Campus and a sports facility at Kasahara 1 Campus. The Tochiko Express has been increasing in daily number of runs, and the area around Kasahara Station is steadily developing. The altitude of the surrounding community promises to make Kasahara Campus part of the university of Sapporo’s “urban structure”—even more attractive as a center for education and research.

[Image of Center for Omics and Bioinformatics]

[Image of Bioimaging Center]

[Image of Functional Proteomics Center]

[Image of TJCC (UTokyo-JAXA Center for Composites)]

[Image of Campus Life]